| Function | Works |
|---|---|
tidypredict_fit(), tidypredict_sql(),
parse_model()
|
✔ |
tidypredict_to_column() |
✔ |
tidypredict_test() |
✔ |
tidypredict_interval(),
tidypredict_sql_interval()
|
✗ |
parsnip |
✔ |
tidypredict_ functions
-
Create the R formula
tidypredict_fit(model) #> 35.3137765116027 + (cyl * -0.871451193824228) + (hp * -0.0101173960249783) + #> (wt * -2.59443677687505) -
Add the prediction to the original table
library(dplyr) mtcars %>% tidypredict_to_column(model) %>% glimpse() #> Rows: 32 #> Columns: 12 #> $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19… #> $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4,… #> $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, … #> $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180,… #> $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.… #> $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, … #> $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, … #> $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1,… #> $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,… #> $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4,… #> $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2,… #> $ fit <dbl> 22.17473, 21.51315, 24.86796, 20.63104, 17.64676, 20.045… -
Confirm that
tidypredictresults match to the model’spredict()results.tidypredict_test(model, mtcars[, -1]) #> tidypredict test results #> Difference threshold: 1e-12 #> #> All results are within the difference threshold
parsnip
parsnip fitted models are also supported by
tidypredict:
library(parsnip)
p_model <- linear_reg(penalty = 1) %>%
set_engine("glmnet") %>%
fit(mpg ~ ., data = mtcars)
tidypredict_fit(p_model)
#> 35.3140536966127 + (cyl * -0.871623418095165) + (hp * -0.0101157918502673) +
#> (wt * -2.59426484734253)Parse model spec
Here is an example of the model spec:
pm <- parse_model(model)
str(pm, 2)
#> List of 2
#> $ general:List of 6
#> ..$ model : chr "glmnet"
#> ..$ version: num 1
#> ..$ type : chr "regression"
#> ..$ is_glm : num 1
#> ..$ family : chr "gaussian"
#> ..$ link : chr "identity"
#> $ terms :List of 4
#> ..$ :List of 4
#> ..$ :List of 4
#> ..$ :List of 4
#> ..$ :List of 4
#> - attr(*, "class")= chr [1:3] "parsed_model" "pm_regression" "list"
str(pm$trees[1])
#> NULL