Skip to content

CatBoost stores categorical features as hash values internally. This function establishes the mapping between hash values and category names by examining a data frame with the same factor columns used during training.

Usage

set_catboost_categories(parsed_model, model, data)

Arguments

parsed_model

A parsed CatBoost model from parse_model()

model

The original CatBoost model object

data

A data frame containing factor columns matching the categorical features used in the model. The factor levels must match those from training.

Value

The parsed model with category mappings added

Details

This function is only needed when using raw CatBoost models (trained with catboost.train()). When using parsnip/bonsai, categorical features are handled automatically and this function is not required.

Examples

if (FALSE) { # \dontrun{
# For raw CatBoost models with categorical features:
pm <- parse_model(catboost_model)
pm <- set_catboost_categories(pm, catboost_model, training_data)
tidypredict_fit(pm)

# For parsnip/bonsai models, this is not needed:
# tidypredict_fit(parsnip_model_fit)  # works automatically
} # }